- 孙训方《材料力学》(第5版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】
- 圣才电子书
- 1478字
- 2021-05-28 19:44:03
第4章 弯曲应力
一、选择题
1.如图4-1所示,轴AB作匀速转动,等截面斜杆固定于轴AB上,沿斜杆轴线弯矩图可能为( )。[中国矿业大学2009研]
A.一次直线
B.二次曲线
C.三次曲线
D.四次曲线
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image105.jpg?sign=1739548038-NcA7OHPFWoV0gF2vUUTBcazNzi8FMFNh-0-fc1f43d3a68462b30c6dae0174a82ff6)
图4-1
【答案】C
【解析】设斜杆以角速度ω匀速转动,斜杆的长度为l,横截面面积为A,容重为γ,于是可得距离固定端x的截面处离心力的集度为:
根据弯矩、剪力与荷载集度之间的微分关系:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image107.png?sign=1739548038-ojFaaYOEv058qXPUDG1W20VCpvL0a5DY-0-dc27deab0db77b08bf5b5f9ab9d61dc9)
可知弯矩图应该为关于x的三次曲线。
2.图4-2所示外伸梁横截面为矩形,且宽为高的三倍(b=3h),此时许用荷载[q]=q0。若将该梁截面立放(使高为宽的三倍),则许用荷载变为( )。[北京航空航天大学2005研]
A.[q]=3q0
B.[q]=9q0
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image109.jpg?sign=1739548038-h32WIRdRYptc44Wj7vKC8mNKYkC9bBxi-0-b172bdecf56d0c71acf869e05b474d70)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image110.jpg?sign=1739548038-QeizSdJnRjU9PHt8V91k94rHUbYNCiA5-0-2ee1298af465b346c7924377bf9255db)
图4-2
【答案】A
【解析】假设在x截面处的弯矩最大,根据正应力计算公式可得:
平放时的最大正应力:,许可弯矩:
立放时的最大正应力:,许可弯矩:
又,可知[q]=3q0
3.图4-3所示,矩形截面简支梁承受集中力偶Me,当集中力偶Me在CB段任意移动,AC段各个横截面上的( )。[西北工业大学2005研]
A.最大正应力变化,最大切应力不变
B.最大正应力和最大切应力都变化
C.最大正应力不变,最大切应力变化
D.最大正应力和最大切应力都不变
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image116.jpg?sign=1739548038-esQN1TzGceVY27ZOWlNSaCGBc7tYYtDy-0-7a68c3e4311c17e1709c1a367f00aa43)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image117.jpg?sign=1739548038-FjLGg1T3V0tNTsoLFaygd2UPwbeaiifq-0-0921d0c85c99be2b07eeb3aa337f9303)
图4-3 图4-4
【答案】A
【解析】设AB梁长为l,Me距B支座为x,作弯矩图如图4-4(a)所示。
在Me作用下,弯矩突变值为,整个梁上剪力大小相同,如图4-4(b)所示,故最大切应力不变(τmax=
。当x发生变化时,最大弯矩值也发生变化,由
知,最大正应力也将发生变化。
二、计算题
1.一⊥形截面的外伸梁如图4-5所示。已知:l=600mm,a=110mm,b=30mm,c=80mm,F1=24kN,F2=9kN,材料的许用拉应力[σt]=30MPa,许用压应力[σc]=90Mpa。
(1)若C为⊥形截面形心,试求y1与y2的值;
(2)不计弯曲切应力的影响,试校核该梁的强度。[北京科技大学2012研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image121.png?sign=1739548038-YbJQojCCc2Xa2jFCWeT0XJu8oiF3Z7vC-0-eeff3c1d3ebe8f674da56f0ae0de4a9a)
图4-5
答:(1)建立如图4-6所示坐标系。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image122.jpg?sign=1739548038-rtRQFjg4akdzfdiGKypwtOA8AzKrhOve-0-9b84f38b8af70fdc02f2bfd2b4f0b03d)
图4-6
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image123.png?sign=1739548038-totDBOdwrWzVoGm3oaTSen4jA6XSWSkM-0-4735b966e29b5de79836a2f1d4178ba7)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image124.png?sign=1739548038-BkEwg4sbSKajLpVMnpBwU2gM5qmpMSFR-0-af7caa8a4de14de0e561174310007e1a)
所以与
值分别为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image127.png?sign=1739548038-oMbCXpOeXcCWbgOgQgMVZ25mt78kKIcj-0-5964e0b5da26c01660252a228e93d533)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image129.png?sign=1739548038-PeS3AIKdV8LuD5667YCnzjvUpSrn4Ipp-0-41fdebba399ab6b0223e857e7736b585)
(2)作梁ABD弯矩图,如图4-7所示
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image130.png?sign=1739548038-ZLMbUaK0TUA4f7jvkPUlEn2zCLVo1Myo-0-d1e7758df457c41642173ab0144ff2f0)
图4-7(单位KN.m)
在截面E处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image131.png?sign=1739548038-FfrQfRtmb8pMju0kFZHbS9XxZTh2YMyt-0-56c9f995ac7467aa3b3838eb2d0f0fb4)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image132.png?sign=1739548038-zv8lsLiIJJvZb1vRicramAbBaxpxSkEW-0-10e23b0e8cd6ce5ba49ad6c9849e7c63)
在截面B处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image133.png?sign=1739548038-o1Kr4b0nG2jWJrqi0v8Hgh5RKYBXBihu-0-1e2aa68203b1436b2fe5f42c2b45b97a)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image134.png?sign=1739548038-SZOCjeTmveW8IzOxiRR9I0xGoAjteLS8-0-f4011db1884bce597fcb0c5c4233cbd2)
综上述,梁的强度满足要求。
2.试绘制图4-8所示梁的剪力图和弯矩图。[武汉理工大学2010研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image135.jpg?sign=1739548038-EOAZqWYBLH3XUAPVJqXM3er6hTWKDI8v-0-155d7e61d279d03a275f426b8719af9c)
图4-8
解:(1)根据平衡方程求得之支反力:
(2)剪力图和弯矩图分别如图4-9(a)(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image137.png?sign=1739548038-aE5kTwSqpTYBIDhZddzIuzgGb2KMoEuV-0-2b9c4f65505cda43c31a4ea00ad5623c)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image138.jpg?sign=1739548038-f7QtYQe0HUWrzBFh3ERPRZbc1hBaQTwi-0-5cc0e57e4c4fc7507cd707bc52e82cd9)
(a) (b)
图4-9
3.已知简支梁弯矩方程和弯矩图如图4-10所示。其中:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image139.jpg?sign=1739548038-uQJju0u9bqXzJZZVJjg03egH2wOT3xzK-0-16c1c29b6ad81c60899b6e144dd1c038)
试:(1)画出梁上的载荷;(2)作梁的剪力图。[西安交通大学2005研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image140.jpg?sign=1739548038-JviJFz5vyZO3msMqt5Z7UvrfHtqzOrGQ-0-2f36c17d73a6b6765bc022aa7c878560)
图4-10
解:根据弯矩、剪力和载荷集度的微分关系,分别对M(x)求一阶、二阶导数,可得到梁的剪力方程和荷载集度:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image141.jpg?sign=1739548038-MDwxkBVNtuGc5lsLVVyR1OD0bhMUkDYF-0-9761bfff7e48e1fd992d390616d03db3)
(1)作载荷图
根据弯矩图可知,在x=0截面上有一正弯矩
根据剪力方程可知:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image144.png?sign=1739548038-ETvb71ESHfNJvI6YQpYtwE97lkFFECGi-0-f99cd11927e51f05df7db2aeca1b5c33)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image145.jpg?sign=1739548038-Rp32TQUYjWDzVJKr4nXv5luAJFXiBeRt-0-1f385e4777c8f461699240da7d9b7927)
在截面左侧,剪力等于
,右侧截面剪力等于
,由此可判断在
截面上有向下集中力
的作用。
由弯矩方程的二阶导数可知:
综上,绘制荷载图,如图4-11(a)所示。
(2)作梁的剪力图
根据以上所得梁荷载图绘制剪力Fs图,如图4-11(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image151.jpg?sign=1739548038-qURpvzFX3DQnjbmha1Wsvy2fVJQVFxgv-0-229ea2bb9dc2b891ae64f1a968e0dd8f)
(a) (b)
图4-11
4.T形截面梁荷载及尺寸情况如图4-12所示,材料许用拉应力[σt]=30 MPa,许用压应力[σc]=80 MPa。
(1)校核梁的正应力强度条件;(2)计算梁横截面上的最大切应力。[同济大学2001研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image152.jpg?sign=1739548038-X6TIE3aZoXjk917gYhvGlp8CL5SwzzHk-0-cfa878373dfc6b12bdc42fbe29d30eae)
图4-12
解:(1)求支座反力作内力图
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image153.jpg?sign=1739548038-BVxnCdsdcxuWKzofJ6Cg3odQnvL6BC57-0-551da2a40a3e60ae66113544c4c0ff6c)
梁的剪力图和弯矩图如图4-13所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image156.jpg?sign=1739548038-X9iEuT6uGpZcV50KNSqEhUpRpgmfu5vW-0-0622261e3546d28b4ca7a5153d1d03f1)
图4-13
(2)确定形心
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image157.jpg?sign=1739548038-CbHEeP91e8k7g3nBuGm9VTOSzjuMHrmM-0-00865f770381f3f3e709dcfb73cc1845)
图形对zc轴的惯性矩为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image158.jpg?sign=1739548038-wkGoMC96pnx2an2EIuoOgtYHVtPr6x8B-0-cbca4d3394cb55884d8d465316ab0f0e)
(3)梁上正应力强度校核
在B截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image159.jpg?sign=1739548038-GGpcJkEFTRkooRcZUpeXj11w48zMQ6CP-0-ffd0a803c5d8aa965d599fc92f0bb793)
在D截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image160.jpg?sign=1739548038-eb1iIMXXVRPbJXvqORnt9n0itAOHFki3-0-b9024a5bf491b761e4f1a1e6d66497aa)
梁的正应力强度条件满足。
(4)梁横截面上最大切应力
在B左侧截面上有最大剪力:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image161.jpg?sign=1739548038-u7Ey7JgDfshHV7hFEf9fHQHiAFkOV75j-0-063631c0e441843e4fbfa9b40f615776)
故
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image162.jpg?sign=1739548038-Zn4Pl2en0vsg9kUBgwYN4qJjbaCDKqWe-0-fe0605100cf26a60a62a4fa077614e3d)
4.T形等截面悬臂梁受力及尺寸(单位:mm)如图4-14所示。已知Z为梁截面的中性轴,P=16KN,a=2m,材料的许用拉应力[σt]=80MPa,许用压应力[σc]=200MPa。弹性模量E=200GPa。试:
(1)校核梁的正应力强度;
(2)计算梁横截面上的最大切应力。[武汉大学2007研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image164.jpg?sign=1739548038-T7PxjngQ6iNko1983JsWhEXkXZ7OeKZt-0-d6bfaa6e3f81324602c0989887db04da)
图4-14
解:(1)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image166.png?sign=1739548038-v1fvG3GPnqtiOQXkx1MxiERUxBEh7l5A-0-2a399195ea8c6dc9bfe06745f906829f)
(2)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image167.png?sign=1739548038-ZFAmS57z2TxQxnzGObp85UeKg3YOx3Cz-0-f796a69febf293c75c202aa2fe8669be)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image168.png?sign=1739548038-lu3fvztC7pfGuf8xuSEkXO2jBK0xVY66-0-333858b83ddaa19960d742512c5464c9)