- 复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 2604字
- 2021-05-28 21:10:09
12.2 课后习题详解
§1 富里埃级数
1.证明:
(1)1,cosx,cos2x,…,cosnx,…
(2)sinx,sin2x,sin3x,…,sinnx,…
是[0,π]上的正交系;但1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…不是[0,π]上的正交系.
证明:(1)因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2265.jpg?sign=1739557857-zueSidphpVhu7FPs8ET6zWYQcGLKdj7e-0-7a2733afce411853e241da4d90a0c673)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2266.jpg?sign=1739557857-2Mzn1UpjVYu4J0QUve6NSkB3FzTKNWy8-0-ce063a47651f35a6570301db20f5a8d8)
则1,cosx,cos2x,…,cosnx,…是[0,π]上的正交系
(2)因
则sinx,sin2x,sin3x,…,sinnx,…是[0,π]上的正交系
又则1,cosx,cos2x,sin2x,…cosnx,sinnx,…不是[0,π]上的正交系.
2.证明:sinx,sin3x,…sin(2n+1)x,…是上的正交系,写出它的标准正交系
(即不仅正交,而且每个函数的平方在上的积分为1),并导出
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2271.jpg?sign=1739557857-A4BK66lxsgCPvcp1eSvNrRtN1SLIriZz-0-43818af18838c50447a59a8b7aba551e)
是[0,1]上的正交系.
证明:因
则sinx,sin3x,…sin(2n+1)x,…是上的正交系
又由得
则在上它的标准正交系为
又
则是[0,l]上的正交系.
3.设f(t)是周期为2π的方波,它在[﹣π,π]上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2280.jpg?sign=1739557857-QpacFaHaG9S0HF5wLddDgtcUzO6BVcXj-0-5ca0f93909e8ba8a5845e078198bf473)
将这个方波展开成傅里叶级数.
解:因又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2282.jpg?sign=1739557857-kdBkmzvLwjMXD0eNXjUow1YXg3JnixqZ-0-44affc9cf87d56947591fd65fbadc6c2)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2283.jpg?sign=1739557857-R5CWkKB98x7uXcbFudpkpUMnvlj2dlFc-0-fa17b92a60b5e6353b023d60858bb413)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2284.jpg?sign=1739557857-wthHkhKe4bYEPLswA6cvEiactnCtEetZ-0-79de1e18e6dbd8060269cf11e6eb0448)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2285.jpg?sign=1739557857-PKNeNeIwTI5AnHeNEEOb8cGENRTjRzpB-0-0917b8309d6682155d77d7ae80d2d356)
4.设f(t)是周期为T的半波整流波,它在上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2287.jpg?sign=1739557857-Q8aOghH8ndvUZNFAK1CzD0RF0VX4M7U3-0-b3210d92ef4ba6967b4108e4bf140db6)
将这半波整流波展开成傅里叶级数.
解:因
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2290.jpg?sign=1739557857-3BvtkvFaakObMGdgOot1CL0grIq9OMuR-0-c9170ab8c5b86c55d7f595f171c8ac75)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2291.jpg?sign=1739557857-HL4fZw1PlozEtKM1q9qjXekVEH1BV1Mw-0-3d46c14e824f02632d752e8d989fbd84)
5.设f(t)以2π为周期,在[-π,π]内
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2292.jpg?sign=1739557857-klpxsHb0onjqJbEkNAxPTuBLGIIWW5N8-0-3a971ea5b5147ac72950dfc99d03a325)
把f(t)展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2294.jpg?sign=1739557857-FcNBOmBZ0FSdPF4b2HYQ7Ssgihxzli0n-0-acbd28518a297b1d7b946ab4bdd0372b)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2295.jpg?sign=1739557857-SZwx3BbmMOYfWKwXODYZzPx4eOsy0sgR-0-530adfe3ca58f3dd7d50fb38ef3b3177)
6.设f(t)是周期为2π、高为h的锯齿形波,它在[0,2π]上的函数表示式为,将这个锯齿形波展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2298.jpg?sign=1739557857-AUiHPnP0UxOn05dMHAGg6Sn3womlp41x-0-c25b3dbd461a47d415a85427ce312749)
则
7.将宽度为τ、高为h、周期为T的矩形波展开成余弦级数.
解:在一个周期内矩形波函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2301.jpg?sign=1739557857-dYJzF5B9lv4CUQ7l16azptXVBqajnYcR-0-7f7b4aa72b20049db057d8a9f9917c8a)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2303.jpg?sign=1739557857-54qRrYF1X2wByq6wf0X5uvGScq8FuIud-0-a4e73599ac610ace423e76bb2e44e6f7)
8.写出如图12-1所示的周期为T的三角波在内的函数表达式,并将它展开成正弦级数.
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2305.jpg?sign=1739557857-JxmKuaXNOKBCvvnTOU45DdwlXC311eht-0-920509e7d610d8d4e6ed359696ca119f)
图12-1
解:如图所示的周期为T的三角波在的函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2307.jpg?sign=1739557857-wM69xxYiakKZVxTzm3MCuU3BgMKEefNR-0-956af037256cc3cd8deadb57f10012c8)
先把f(t)延拓成上的函数,再据题意,还必须把它延拓成奇函数,于是a0=ak=0
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2309.jpg?sign=1739557857-yolBT8S04V88JPeqc2237UUxV8Hmgw2T-0-34bde05f8480655cc3ee4a650f708e44)
则
9.将f(x)=sgn(cosx)展开成傅里叶级数.
解:因f(x+2π)=sgn[cos(x+2π)]=sgn(cosx)=f(x),则f(x)是以2π为周期的周期函数
又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2312.jpg?sign=1739557857-8vFa6rHODvvO6cMBHCp31lFDT2m848dd-0-014e81116c23d467315fded07d32636b)
则f(x)在(-∞,+∞)上可展为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2313.jpg?sign=1739557857-AH1Bowrr27EZtbPGoaRV0L06tGA6pvoW-0-fb8f3bab331c599b328f793dd2137bb7)
10.应当如何把区间内的可积函数f(x)延拓后,使它展开成的傅里叶级数的性状如下:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2315.jpg?sign=1739557857-4yFquSholOkiS1XCGGNOI4283jWfGvaq-0-86ade24209e28909886f229d9e876252)
解:因展开式中无正弦项,则f(x)延拓后应为偶函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数a2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2317.jpg?sign=1739557857-41Rlo1YtYZWCtv61I9iNJO4FQtrTjPMI-0-3c9d7db938f34340d6a311dee1878543)
则
在左端前一积分中作变量代换,令x=π-t则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2319.jpg?sign=1739557857-qQcRIXfzOJee1SVKO7OxBAx7yHkI9R9T-0-c51c624c4a10c28e018131f40d8e37f9)
要使上式成立,则必须当时.有f(π-x)+φ(x)=0即φ(x)=-f(π-x)
于是就求出了延拓后的函数在内的表达式为-f(π-x)
又延拓后的函数为偶函数,则它在的表达式为f(-x),在
的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2324.jpg?sign=1739557857-rUXaJcFHUSvlat7iNgLu3efX8bXjrKUS-0-7e99c0e608def9499cdf0e146c1cdd5a)
11.同上一题,但展开的傅里叶级数形状为:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2325.jpg?sign=1739557857-VT4rrQVrvgiQtcN90hu8xPk576WG2XLH-0-ac1e3222aa64e2ac4ece9ae4277924a8)
解:因展开式中无余弦项,则f(x)延拓后应为奇函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数b2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2327.jpg?sign=1739557857-SurvGL9rCGO3Woizc38qPtMpp2MkUPvR-0-7f5adf170375a04b8b1ef52a9815530b)
则
在左端前一积分中作变量代换,令x=π-t
则
要使上式成立,则必须当时.有-f(π-x)+φ(x)=0即φ(x)=f(π-x)
于是就求出了延拓后的函数在内的表达式为f(π-x)
又延拓后的函数为奇函数,则它在的表达式为-f(-x),在
上的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2334.jpg?sign=1739557857-2st3zwmKVe1XTZM46XX4LoyzNrwaL7bC-0-f0c450473ed32913768345f5a72e3f97)
12.设f(x)可积、绝对可积,证明:
(1)如果函数f(x)在[-π,π]上满足f(x+π)=f(x),那么a2m-1=b2m-1=0
(2)如果函数f(x)在[-π,π]上满足f(x+π)= -f(x),那么a2m=b2m=0
证明:(1)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)=f(x)
则f(x)在[-π,π]上可积、绝对可积且以π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2336.jpg?sign=1739557857-GmIOq1MHrHUmdLnq9GSiCshFLnTIGf8O-0-5c7ab325f8362a5d981627c7a62cfd55)
于是
从而,得a2m-1=0(m=1,2,…)
同理,得b2m-1=0(m=1,2,…)
(2)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)= -f(x),则f(x+2π)=f(x)
于是f(x)在[-π,π]上可积、绝对可积且以2π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2339.jpg?sign=1739557857-0SBHenSbVWRgezTERnCmbDOpvr4wnMYo-0-bde8302e28fb395c609aacb2abcefc77)
于是
从而,得a2m=0(m=1,2,…)
同理,得b2m=0(m=1,2,…)
13.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2343.jpg?sign=1739557857-rBnT7r6aVPhMitrafBRif1Zc5tmXIG3v-0-cfa43f791d2e3a3a57f53b0d5ef0e06d)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2346.jpg?sign=1739557857-fVNI6AfVLPtIzfYpQ6eagc1cr2dIMwWh-0-1502a205367675c9fb9fe0cde1151237)
同理,得bn=-βn(n=1,2,…)
14.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶系数分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2350.jpg?sign=1739557857-do3QIFha26UYgKRq1jMXrvdwDpNqMOzK-0-abcb5617200c506763b2074ee3c7ac56)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2351.jpg?sign=1739557857-S5LjhqaConvrdfBQbwPey736xG0FOaQT-0-507b3a5d39ab8309b42b22ef708fbd25)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2354.jpg?sign=1739557857-3CdfLCufDJq1mvPXLCFFt8p0mlYBmJs6-0-b277e7cf78b42e3eeadcfbfc643b1463)
同理,得bn=βn(n=1,2,…)
15.设f(t)在(-π,π)上分段连续,当t=0连续且有单侧导数,证明当p→∞时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2355.jpg?sign=1739557857-Hj6FQVY6ZVtLz4zFlasdEcXAOhpmHtsz-0-124e593cb345e60835c1828595efdbc5)
证明:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2356.jpg?sign=1739557857-Ryj5HbscS4LwGRSXH4IMnBf8jisJypki-0-158be424186e94e8ae48c9d680982856)
在右端前一积分中令t=-x,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2357.jpg?sign=1739557857-xU4aoC633ed6KVpOrLd3jNd3sheWUimi-0-b241b2e5d0f6cd1937afcb825ec178b4)
代回原式,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2358.jpg?sign=1739557857-NsajXSaNvJZS2lebfxuaEcNcmryqI25z-0-d71b74828461bcfb598c0b3796173cfd)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2359.jpg?sign=1739557857-U5jZkagexZwXvL8MvA0Eig42jDMd5H3K-0-8ffc98af6ea78ec368d018a676329ed5)
下证
因
对于
因f(t)在(-π,π)上分段连续,在(δ,π)上连续,则
在(δ,π)上分段连续因而可积,则由黎曼引理,得
对于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2367.jpg?sign=1739557857-Q5Ot5OYUr7HKWuGRyvlVHk32cGNGPJy1-0-4e23f3078aacf95b4d6e802d8ca1622e)
因补充定义,t=0时,函数
的值为0,则
是[0,δ]上的连续函数
又f(t)为(-π,π)上的分段连续函数,则在[0,δ]上分段连续,因而可积,则由黎曼引理,得
因f'(+0),f''(-0)存在,则存在
补充定义,t=0时,函数值为f'(+0)+f'(-0),则
是[0,δ]上的分段函数,因而可积,于是由黎曼引理,得
综上可得,当p→∞时,
§2 傅里叶变换
1.设f(x)在(-∞,+∞)内绝对可积,证明在(-∞,+∞)内连续.
证明:对总有A',A'',使得ω∈[A',A'']
由于
后者收敛且不含参量ω,这表明积分在[A',A'']上一致收敛,据一致收敛积分的连续性,得
在[A',A'']上连续,从而在点ω处连续,由ω的任意性,得
在(-∞,+∞)内连续.
2.设f(x)在(-∞,+∞)内绝对可积,证明
证明:由f(x)在(-∞,+∞)内绝对可积,得对于任给的ε>0,存在A>0,使有
设f(x)在[0,A]内无暇点,则在[0,A]中插入分点0=t0<t1<…<tm=A,并设f(x)在[tk-1,tk]上的下确界为mk,于是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2387.jpg?sign=1739557857-Txd7XhgMhHgMB0ZZ1ZUn7P1tEREwbtX2-0-527a78369f8c93ade57a72e3899938a8)
从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2388.jpg?sign=1739557857-ROteEOPcMpDTxZotjlcNnyA2p384dFrj-0-e920c552400010939e6824fa401f9a72)
其中ωk为f(x)在区间[tk-1,tk]上的振幅,△tk=tk-tk-1
由于f(x)在[0,A]上可积,故可取某一方法,使有
对于这样固定的方法,为一定值,因而存在δ>0,使当ω>δ时,恒有
于是对上述所选取的δ,当ω>δ时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2392.jpg?sign=1739557857-XFPJ1mA76ZXhjzbwrx9LpXTyAx0fNaTm-0-c11be0f0b53dcee78b8d230d0a42e76c)
其次,设f(x)在区间[0,A]中有瑕点,为简便起见,不妨设只有一个瑕点且为0,于是对任给的ε>0,存在η>0,使有
又f(x)在[η,A]上无瑕点,故应用上述结果可得存在δ,使当ω>δ时,恒有于是当ω>δ时,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2395.jpg?sign=1739557857-Dy3i8QfCU4jIfzaZMHLUN0XFAO13vnrO-0-d890d8ece6fdf17cded6dbce38d0d1f9)
即
同法,得当f(x)在(-∞,+∞)内绝对可积时,均有
同法可证得当f(x)在(-∞,+∞)内绝对可积时,
于是
3.求下列函数的傅里叶变换:
(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2400.jpg?sign=1739557857-4YjA0g7AAzLnCcMRtBIN19u2kwHQfLGQ-0-64deceadc910b78d2f5edce6ae1f0457)
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2401.jpg?sign=1739557857-a094NyMIpL6ePcced6jpcvI6pTSbTMoq-0-bb2a59744794b4cf4130645d4f9db099)
解:(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2402.jpg?sign=1739557857-mLE4GAQIRTWTxQ2Be0OXokidC2LbVRZu-0-084724e156c22951b92b8bee67b4dfd3)
因为(-∞,+∞)内的连续函数,则
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2405.jpg?sign=1739557857-Ez49eh3Q9pvRMNiz2Jd6FUt9NZk1muQU-0-48b5fea54a292d951ec91dbf56ecc29a)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2406.jpg?sign=1739557857-Kmo9mQuy3ft5UDZ5c3lG0cD14O8TKKDh-0-064898f5f553fcbeb4b0ed432634f131)
因为(-∞,+∞)内的连续函数,则