- 复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 14字
- 2021-05-28 21:10:08
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739372423-ZWkWVyG4qcaYuWpm00VYG8aGIAgx9YUH-0-f9c853e616f3c0f3bb486914a0b50301)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739372423-UNWhmvKDDc9dFPcsYmkmzLDSBQA1Zyd1-0-fb05e4818cb27fe08aa1cf69a130764d)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739372423-w69jq3CN5Ww5qjPMyezXiB0ajWGANLII-0-50def0e0a2d72c40a332656a651afd3d)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739372423-LkFVZE4dCkq2RDJrGg8FFYHAfbTfBMSu-0-3033c7036b98fd15f786a760c1011b2f)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739372423-Pln3TRdnxzJZMDMXpoS3lATHE5kns3nd-0-b861ec1f94320443e73186b2fb932e53)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739372423-FqCjVC6jHzQvtjUXR08fkjBOIVQhlPwu-0-07bfaec48f879891d0bcf9ea7b0549b2)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739372423-pLUzUQ2mPvmio2UzNIP2S2qZrIl9muCc-0-54d4742a09c93afa0581444b5ab35937)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739372423-O0NfCAoydz3gl2G6vEVnD1zWYixBOOiw-0-a9b3ca397261c4d5bc828edfeaa90b93)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739372423-n1i5A7Qwry1HZJmi8KcjPUU65a7LBEeR-0-ec4b9122f44ca45daa7f049ccbec295a)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739372423-FaA4KLeiNEkeviqJEeOiZczt3iIpR6Xh-0-3e4041323594ed2954a11c23876ea8af)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739372423-SST1gtMF5ZqniE4OEdpiVEP2XGNo9AJX-0-08c8c83acfaf1d7d0e7e3f089eee7e0c)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739372423-NYmro4NP5HPxH1G6jZixRKjes9uN3YUD-0-15cf254f945ddc147e6154435cc6507e)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739372423-U8h54XC4x2wRPTzP8DZnSZw20OsnOpse-0-a14d17b96145c2fc45a24008f84c75cc)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739372423-74f6PUea8FE7gx4C4XNvFFWUWqpcX6KY-0-96826d168c9a0fce34551222e7601d0a)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739372423-o5w8Nkp28WWJoKIsHzd9lfjdyRkL60do-0-6b743df84a126330c541632c95d5268a)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739372423-KMzcGJV8xav45kz1H2WakMpFHee4pXnh-0-a7e9779faf05b25b0a8b1032556b926b)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739372423-Kf5R8YUQOu54FN0GiRuMFQVTNb3sDfug-0-b0cbef41fbdb6ca599059e42578ae11c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739372423-fSLtVKyprALvjMuN76c6LmzwiwLvSlHg-0-c24560042a328117b9f6f69e5cbc5f71)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739372423-isiw7W8zKawNnghxPPmaIzJ8br81ykOm-0-b3768b8373605670c7518a41f00683a1)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739372423-UlVzAYDceFlQl2LerNtump0WyymuFTU2-0-2d0de94780ed574728531e14745037ce)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739372423-IQeDGIJJSGlgnJA9r79VXH61KYJYL6zs-0-a511bed1262d321ac305170520e82162)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739372423-2j8PhmNxS5k7CQMSsgvCAQrdz0hSZskS-0-1182707887e0387c0493d94d0f0a7f56)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739372423-IkBnFsOF0b5vhJtILflVOiKFK5st6e6l-0-2678cac33818f6f56bf8b71607bed4a5)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739372423-45jbxWFl0U5fuzXEP1vzLOCKnTQVHTWj-0-d3022c957a86b868924c7405cb1f7877)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739372423-V82m4M0nrKeZcOeJN83k2a7H2Hzc5NLa-0-42dcf7033cd3c91f874e6d467166a344)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739372423-X1QovBGcxH2q7jOXZ0ATguoxgDL4gvPA-0-b1fd343737935bc7c233c9aa36cb770b)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739372423-zRLkbnB3UuXgjyGknJS46At1M1ZF3YEv-0-f427124a2baaca0f9e3431a5532685ae)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739372423-Xcj84UQcr8G1kIm1YiSjtovISGSaJfNs-0-77b58bf1d465478c00ef40ca061e1fa0)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739372423-uhOmZymK993pNEFMbpFqlLh6d0ZzWAi0-0-67da2e87e410b38803279c337fbd9987)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739372423-QSSjfSAhrLvzvWCjtfJ3t6RxwGObUyW3-0-8fe754aab188c4dddf207a754b871b4f)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739372423-dhhVjKS8SjmRGfhAM21o2Uy9wwbKI1qe-0-c1123ea1bbfe5dd054fbf3041ba26cd1)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739372423-w0aIAwH5LYU6KOyGPGqemVjO0AdO3KCO-0-c078d90f429d9497254037ad8f54e6fe)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739372423-tNNZA6lmMlnNQ0MudH0yRvev9vqddnvr-0-fdc2af2f2304f1c7676d013ec553affe)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739372423-Nr7XOu7ux4lUOGZgom39GjPK0bF57cxw-0-a05f8931e37254b5d2947d0ede40985c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739372423-oImIwDfO3WVK6fkcV1JkDY5y4nQmf16R-0-c4cb61ba0053257a7b8b820f2bc8942d)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)