会员
AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型
更新时间:2024-08-22 11:17:20 最新章节:封底
书籍简介
本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。通过阅读本书,您将学习如下内容:(1)AIGC技术基础深入了解神经网络的基础知识,包括卷积神经网络和循环神经网络的原理与应用。并通过学习神经网络的优化方法,您将掌握如何优化和提升神经网络的性能。(2)图像生成模型包括从自动编码器(AE)、变分自编码器(VAE)、生成对抗网络(GAN)等图像生成模型。通过学习优化方法,如WGAN、WGAN-WP、StyleGAN等,您将掌握如何提高图像生成模型的质量和稳定性。同时,了解图像生成模型的应用,如迁移学习、风格迁移等,让您轻松实现个性化创作。此外,还将带您深入了解DDPM、DDIM等扩散模型的前沿技术,为您展现图像生成技术的最新成果,探索更加出色的生成效果和表达方式。(3)语言生成模型了解注意力机制、Transformer架构等基础知识,深入探索GAT系列、大语言模型(如ChatGPT),让您掌握自然语言处理的精髓。(4)多模态模型了解CLIP、StableDiffusion、DALL.E等多模态模型,触碰视觉和文字的奇妙交织,领略多模态智能的广阔前景。
品牌:机械工业出版社
上架时间:2024-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
吴茂贵
同类热门书
最新上架
- 会员本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视计算机10万字
- 会员《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、计算机10.1万字
- 会员PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字
- 会员增长是企业利用计算机、大数据、人工智能等新技术实现经营增长的新思路和新方法,本书作为该领域的入门级读物,介绍了AIGC在增长领域的技术和实战应用。本书分为4部分,第1部分、第2部分、第4部分主要针对有兴趣了解AIGC背后技术原理、增长模式的变化以及截至2023年3月业界、学术界的最新技术进展的读者;第3部分包含AI的基础知识、基础模型,并从实战应用角度介绍作为应用开发者如何高效上手与利用最新的开源计算机21.9万字
- 会员这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角计算机16.9万字
- 会员本书作为文心一言的学习指南,全面、细致地介绍了文心一言PC端和App的各项功能和使用方法,力求通过简洁明了的语言和图文并茂的形式,让读者快速掌握文心一言的各项功能。全书共8章,首先简单介绍了人工智能发展的几个阶段及文心一言的相关研发背景;随后介绍了文心一言的基础页面及功能等内容,以及文心一言在学习、工作、生活娱乐方面的应用及相关案例;接着介绍了文心一言的插件,以及文心一言App的功能和使用技巧;最计算机10.7万字
- 会员ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。计算机13.2万字
- 会员全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字