会员
大学计算机基础
计算机网络计算机理论、基础知识22.6万字
更新时间:2020-11-02 09:46:11 最新章节:参考文献
书籍简介
根据全国高等学校计算机基础教育研究会发布的“中国高等院校计算机基础教育课程体系2014”中关于大学计算机基础类课程教学设计方案的要求,结合当前人才培养的目标编写。全书共8章,主要内容包括:计算机基础概述、操作系统、办公软件及其应用、计算机网络基础、数据库技术基础及Access应用、多媒体技术及应用、计算机安全和程序设计基础。
品牌:人邮图书
上架时间:2017-08-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
曹惠雅 陈维 杨有安主编
同类热门书
最新上架
- 会员本书以简洁的语言介绍了使用Word和InDesign编辑与排版文档所需掌握的主要功能、操作方法和实用技巧。本书提供了动手实践案例实战疑难解答几个栏目,以便增强学习效果,使读者可以更好地将理论知识与实践相结合。本书共9章,内容分为Word和InDesign两部分:Word部分中的内容主要包括文档基本操作和页面设置、文本编辑和格式设置、创建和设置表格、插入和设置图片、图文表混排、创建和使用样式与模板、计算机9.9万字
- 会员《可持续设计:数字·多元·安全》是国际体验设计大会的演讲案例的论文集,汇聚了当下具有影响力的数位国内外知名企业的设计师、商业领袖、专家的大量实践案例与前沿学术观点,分享并解决了新兴领域所面临的新问题,为企业人员提供丰富的设计手段、方法与策略。计算机19.5万字
- 会员本书共共15章,主要包括多源信息融合处理理论与方法及多源信息目标检测、识别和应用两部分内容。书中具体讲述了多源信息融合处理的基本概念以及多源信息融合发展的核心理论方法,如Dempster-Shafer证据理论等;介绍了多源高冲突信息鲁棒性证据推理方法、多辨识框架下异构证据融合方法以及多值迁移融合方法等多种融合技术;给出了多源信息融合的典型应用,特别是在不确定数据分类、多源信息融合检测与识别领域的实计算机17万字
- 会员本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于回归事物本质,规律性、系统性地思考问题理论为实践服务并且反过来充实理论,为更多人服务的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的到底是什么,为什么要这样做的通俗理解。尽可能计算机17.3万字
- 会员在物联网及大数据被广泛应用的时代背景下,计算机网络在人们的日常生产生活中的应用比重越来越大,并潜移默化地改变着人们的生产生活方式。在计算机网络中,应用最广泛的是局域网。本书对局域网的组建、管理与维护进行全面剖析,向读者揭开局域网的神秘面纱,在熟悉局域网知识要点的同时,重点培养读者的动手能力和专业思维能力。全书共9章,内容包括局域网概述、局域网基础技术、局域网网络设备、无线局域网的组建、局域网规划与计算机10.8万字
- 会员文心一言是百度推出的一款基于大语言模型的生成式AI产品,《文心一言从新手到高手(写作+绘画+教育+编程+助手)》详细介绍了其在不同领域的应用方法,是一本全面、详尽的文心一言使用指南。《文心一言从新手到高手(写作+绘画+教育+编程+助手)》共8章,依次讲解了文心一言的基础知识、创意写作、零基础绘画、数据分析、营销文案写作、职场百宝箱、求职招聘、教育教学、学生学习、编程辅助、生活顾问、插件、文心一言A计算机12.2万字
- 会员深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(D计算机16.9万字
- 会员本书以实用、够用为创作原则,以普及计算机使用方法为指导思想,在主流Windows10操作系统的基础上,用通俗易懂的语言对计算机的基础知识及基本应用进行详细阐述。全书共9章,包括计算机的发展历史、系统组成、硬件设备、Windows10的基本操作、个性化设置、文件与文件夹的管理、系统自带工具的使用、三大办公组件的使用、多媒体技术的应用、计算机网络与信息安全、网络新技术等。除了详细的说明与操作外,还计算机9.9万字
- 会员本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字